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Reduced Southern Ocean warming enhances global skill and
signal-to-noise in an eddy-resolving decadal prediction system
Stephen G. Yeager 1✉, Ping Chang 2, Gokhan Danabasoglu1, Nan Rosenbloom 1, Qiuying Zhang2, Fred S. Castruccio 1,
Abishek Gopal 2, M. Cameron Rencurrel2 and Isla R. Simpson 1

The impact of increased model horizontal resolution on climate prediction performance is examined by comparing results from
low-resolution (LR) and high-resolution (HR) decadal prediction simulations conducted with the Community Earth System Model
(CESM). There is general improvement in global skill and signal-to-noise characteristics, with particularly noteworthy improvements
in the eastern tropical Pacific, when resolution is increased from order 1° in all components to order 0.1°/0.25° in the ocean/
atmosphere. A key advance in the ocean eddy-resolving HR system is the reduction of unrealistic warming in the Southern Ocean
(SO) which we hypothesize has global ramifications through its impacts on tropical Pacific multidecadal variability. The results
suggest that accurate representation of SO processes is critical for improving decadal climate predictions globally and for
addressing longstanding issues with coupled climate model simulations of recent Earth system change.
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INTRODUCTION
The capacity to predict seasonal to decadal Earth system
variability and change has grown rapidly in recent years using
initialized coupled climate models that incorporate slowly
evolving components such as the ocean, land, and sea ice1,2.
Initialization from observation-based states improves forecast skill
even for decadal outlooks that are strongly influenced by
externally forced warming trends3. Large ensembles (≥20
members) have revealed the promising potential to predict
multiyear to decadal variations in regional surface air temperature
(SAT), precipitation (PRE), and atmospheric circulation4–9. While
decadal climate prediction science has advanced to the point that
operational decadal forecasts are now feasible10, model fidelity
remains a key obstacle hindering progress and limiting the utility
of real-time forecasts2. Reliable operational decadal predictions
are greatly needed to inform actionable planning and mitigation
measures to avoid the worst impacts of near-term regional climate
change.
Initialized prediction permits a more direct evaluation of

coupled climate model realism than is possible using traditional
(“uninitialized”) historical simulations whose internal variations are
not synchronized with observations. The co-occurrence of low
ensemble mean (signal) variance in seasonal to decadal climate
prediction systems with a high correlation between that signal
and observations suggests that there are fundamental deficiencies
in simulating the predictable component of Earth system
variability in the current generation of coupled climate mod-
els3–5,7,11–13. The explanation of this signal-to-noise paradox,
wherein the model ensemble mean correlation with observations
is higher than that with individual ensemble members, remains an
open research question, but it appears to be intrinsic to model
structure rather than initialization14. The use of large ensembles
allows weak but skillful signals to be extracted from noisy systems,
circumventing this issue to some extent but leaving the
fundamental problem unresolved. This is a critical problem to
address given the role of these models in uninitialized climate
projections, where increasing ensemble size does not solve the

problem. It has been suggested that weak signals could be related
to deficient model response to external forcings such as volcanic
eruptions15, an idea bolstered by recent work showing that the
tropical Pacific response to historical volcanic aerosol forcing may
be flawed in some decadal prediction systems16. A leading
hypothesis is that low signal-to-noise in prediction systems (and
by extension, in the underlying models) is fundamentally related
to their coarse spatial resolution17–20, but tests of this hypothesis
in an initialized prediction framework have been lacking due to
the enormous computational expense of running large sets of
ensemble climate hindcast simulations as well as technical issues
associated with observation-based initialization of high-resolution
models.
Most simulations contributed to the Coupled Model Intercom-

parison Project (CMIP) use component models at roughly 1°
(~100 km) horizontal grid resolution, and this is true of all recent
contributions to the Decadal Climate Prediction Project21 (DCPP)
of CMIP phase 6. There is mounting evidence that finer model
resolution (atmosphere, ocean, or both) reduces mean biases and
improves the fidelity of a wide variety of processes relevant to
global climate prediction22–29. Specifically, the use of coupled
models with eddy-resolving ocean components that permit
explicit representation of ocean mesoscale turbulence and
associated small-scale air-sea interactions is a technically challen-
ging but promising growth area that could deliver more accurate
projections of future climate change26,29,30. High-resolution atmo-
spheric model simulations (0.5° or finer in the atmosphere) forced
with and without ocean mesoscale features show an upscaling
impact of ocean eddies and fronts on large-scale atmospheric
circulations above the planetary boundary layer31–34. Stronger air-
sea coupling at the ocean mesoscale has been shown to yield
higher signal-to-noise for atmospheric fields18, and recent studies
of decadal potential predictability using high-resolution coupled
models have lent support to the hypothesis that explicit
representation of ocean eddies and associated atmospheric
impacts can enhance climate prediction skill and help to resolve
the signal-to-noise paradox17,20.
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In this study, we explore the benefits of substantially increased
horizontal grid resolution in the context of initialized climate
prediction by comparing two decadal prediction systems using
the Community Earth System Model (CESM): (1) the CESM1.1
Decadal Prediction Large Ensemble (DPLE5) that was submitted to
the CMIP6 DCPP, and (2) the CESM1.3 High Resolution Decadal
Prediction (HRDP) system. The CESM1.3 model in HR configuration
(0.25° atmosphere and land coupled to 0.1° ocean and sea ice)
exhibits generally improved realism compared to its LR (1° in all
components) counterpart23,26, including reduced biases in ocean
deep convection27 and sea surface temperature (SST)28, more
realistic air-sea coupling35, and improved eastern boundary
upwelling29. This decadal prediction comparison builds on these
recent resolution sensitivity studies using CESM and reveals
significantly enhanced skill for a variety of fields of interest
together with improved signal-to-noise characteristics. To first
order, performance improvements in HRDP appear to be related
to more realistic SO variability and associated improvements in
multidecadal trends in the tropical Pacific. This has potential
implications for the ongoing debate regarding the mismatch
between historical and modeled trends in the tropical Pacific.

RESULTS
Skill for surface fields
A key difference between the two prediction systems is the
horizontal resolution of the ocean and atmosphere component
models (Table 1 and Methods). While similar techniques are used
to generate historical ocean and sea ice initial conditions, HRDP is
initialized from a 0.1° ocean and sea ice state reconstruction that is
generally more realistic than the 1° reconstruction used in DPLE24.
It is therefore likely that initial condition quality contributes to skill
differences (see discussion below), although we cannot quantify
this effect and leave it for future work. The more realistic
atmosphere and land initialization in HRDP is unlikely to be a
factor contributing to the pentadal skill differences of interest here
because neither the atmosphere nor the land is expected to
contribute to long timescale memory. Other model differences
(atmosphere dynamical core, CESM version, miscellaneous tuning
and parameter differences) are likewise believed to have much
less impact on the results than differences in model resolution and
related model physics representations. The comparison below

therefore represents a holistic assessment of prediction system
sensitivity to resolution, where the system encompasses both
initial condition generation and coupled ensemble hindcasts.
Subsampling DPLE to match the hindcast set and ensemble size

available from HRDP permits a direct comparison of system skill.
Anomaly correlation coefficient (ACC) maps for forecast years 1–5
(FY1–5) annual mean SAT, PRE, and sea level pressure (SLP) reveal
similar overall skill patterns in the two systems but also notable
improvements in HRDP (Fig. 1). Previous work has established that
external forcing contributes substantially to decadal skill for these
fields3,5, but the primary focus here is not on the source of skill but
rather the difference in skill attributable to system resolution.
HRDP shows significantly higher SAT skill than DPLE (Fig. 1c) in the
subtropical eastern Pacific (SEP) and throughout much of the
Southern Ocean (SO). Surface temperature variability in the
eastern Pacific sector of the SO (EPSO) stands out as much better
represented in HRDP—a critical improvement that will be
discussed further below. Some SAT skill degradation in HRDP is
seen in some regions, most notably in the Agulhas retroflection
region south of Cape of Good Hope—a region of strong ocean
eddy activity where the high-resolution ocean might have been
expected to deliver improved realism. A quantitative comparison
of significant ACC differences between 80°S and 80°N confirms the
visual impression that skill for annual SAT is overall better in HRDP
than DPLE (Supplementary Table 1).
PRE skill is also generally higher in HRDP, although there are

many scattered regions of skill degradation as well (Fig. 1f).
Significantly increased ACC for PRE in the eastern tropical Pacific is
likely related to the increased tropical SAT skill, and it suggests
that improved large-scale teleconnections associated with tropical
Pacific convective heating anomalies might explain the wide-
spread skill enhancements seen in both PRE (Fig. 1f) and SLP
(Fig. 1i). A promising result that merits a focused study in the
future is the improved PRE skill over North America, especially
along the US west coast. Skill in this region is negligible in DPLE
(even when ensemble size is increased; see Supplementary Fig. 1),
whereas the high skill in HRDP implies good potential to forewarn
this vulnerable region of impending hydroclimate variability or
change. This improvement is likely related to the much-improved
tropical Pacific skill given the established links between western
US hydroclimate and tropical Pacific variability36,37, but it could
also be associated with improved representation of Kuroshio eddy
influence on the Pacific storm track and atmospheric rivers31,32,34.
Both systems exhibit high (but roughly equivalent) skill for PRE in
the Sahel region of Africa, which is a common finding in decadal
predictions that appears to be at least partly related to
initialization3,5. In addition to parts of North and South America
(in particular, Chile), regionally enhanced PRE skill over land is
evident in a band stretching from central North Africa through the
Middle East into southeast Asia, as well as over eastern Eurasia, the
Maritime Continent, and the Caribbean. There are also many
regions of degraded PRE skill in HRDP, but the percentage area of
significant skill increase (25%) is greater than that of significant
skill decrease (17%), and furthermore, skill increases tend to be
larger in magnitude than skill decreases (Supplementary Table 1).
Large areas of skill improvement are seen for annual SLP

(Fig. 1i), corresponding to broad regions where HRDP shows high
ACC (exceeding 0.6) in the tropical eastern Pacific, the extratropics
of all ocean basins, and the Norwegian Sea (Fig. 1g). Skill is also
significantly higher in HRDP over the Indian Ocean and surround-
ing land masses. Both systems show low SLP skill in the Atlantic
sector, and here HRDP shows degradation compared to DPLE in
the subtropical North Atlantic and over the Euro-Mediterranean
region. However, improvements at high and midlatitudes in the
North Atlantic suggests that skill for the North Atlantic Oscillation
(NAO) is higher in HRDP. This is confirmed by an examination of
annual and winter NAO index timeseries that show higher ACC for

Table 1. Decadal prediction systems.

HRDP DPLE

Model
Ocean
Atmosphere
Land
Sea ice

CESM1.3
POP2 (0.1°, 62L)
CAM5-SE (0.25°, 30L)
CLM4 (0.25°)
CICE4 (0.1°)

CESM1.1
POP2 (1°, 60L)
CAM5-FV (1°, 30L)
CLM4 (1°)
CICE4 (1°)

Forcing
Scenario

CMIP5
RCP8.5

CMIP5
RCP8.5

Initialization
Ocean
Atmosphere
Land
Sea ice

Full field
FOSI (0.1°, OMIP2)
JRA55 reanalysis
HighResMIP Tier 1
FOSI (0.1°, OMIP2)

Full field
FOSI (1°, OMIP1)
N/A
N/A
FOSI (1°, OMIP1)

Hindcasts
Start date
Start year
Simulation length

N= 21
November 1
1976, 1978, ..,2016
62 months

N= 64
November 1
1954–2017
122 months

Ensemble size 10 40

Total simulation years ~1100 ~26,000

Normalized
computation cost

~100 1
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HRDP than DPLE (r= 0.28 compared to r= –0.17 for 5-year-
averaged annual NAO; see Supplementary Fig. 13).
Mean square skill score (MSSS) maps for annual fields show that

the overall ACC skill enhancement in HRDP is accompanied by a
general improvement in the magnitude of predicted anomalies
(Fig. 2). There is a close correspondence in the skill difference
patterns from Figs. 1 and 2 (compare panels c, f, i), but MSSS
reveals more widespread improvements in SAT. Significantly
enhanced MSSS for PRE and SLP indicates that pentadal
atmospheric signals in HRDP, attributable to external forcing
and/or ocean SST forcing, are considerably stronger in that
system. Increasing the ensemble size from 10 to 40 in DPLE tends
to increase ACC magnitude while maintaining the general
patterns of positive/negative skill (Supplementary Fig. 1), and
MSSS shows a more uniform increase for fields like PRE and SLP
(Supplementary Fig. 2). However, the skill differences between 10-
member and 40-member DPLE are generally not significant at the
grid scale (in contrast with large-scale metrics where significant
benefits of a larger ensemble size have been identified5,6). While
HRDP is much more expensive than quadrupling the DPLE
ensemble size (factor of 100 versus 4; Table 1), it yields
qualitatively different and overall better skill results that help to
shed light on prediction system process representation.

Attribution of HRDP prediction skill to contributions from
external forcing and initialization using conventional techniques3,5

is not possible due to the lack of a large ensemble of uninitialized
historical simulations using HR CESM1.3. However, skill for
detrended fields offers a rough indication of where initialized
internal variability may be an important factor, and furthermore,
linear detrending is a method that can be applied consistently to
both systems (Fig. 3). The North Atlantic stands out as a region of
high detrended SAT skill, with both systems exhibiting a
horseshoe-like pattern of elevated ACC reminiscent of the SST
loading pattern of Atlantic multidecadal variability38. HRDP skill is
higher throughout the tropical Atlantic but particularly so in the
northern tropical Atlantic (Fig. 3c), a region that has historically
shown low skill improvement due to initialization in decadal
prediction systems39. There are also related SAT skill increases
over land in HRDP over North Africa and southern Europe. On the
other hand, HRDP shows lower skill in the subpolar North Atlantic
(SPNA), which is often highlighted as a key region benefitting from
initialization3,5,40. Lower SPNA skill in HRDP implies that this region
does not account for the higher northern tropical Atlantic skill in
HRDP, as might have been expected from previous work
highlighting an extratropical-tropical connection in the North
Atlantic41. The reasons for skill degradation in the SPNA remain

Fig. 1 Correlation comparison for annual fields. ACC skill for 10-member HRDP (a, d, g), 10-member DPLE (b, e, h), and their difference (c, f, i)
for years 1–5 forecasts of annual surface air temperature (SAT; top), precipitation (PRE; middle), and sea level pressure (SLP; bottom). Difference
values in (c, f, i) are non-zero only where HRDP skill is significantly higher or lower than DPLE skill at the 90% confidence level (see Methods).
See Supplementary Table 1 for a quantitative summary of skill differences plotted here.
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under investigation, but it appears to be related to a less accurate
reproduction of historical, observed variability in this region in the
HR-FOSI simulation used to initialize HRDP compared to the LR-
FOSI used for DPLE (Table 1). The SEP and EPSO regions still show
large skill improvement (ΔACC > 0.5) in HRDP after detrending
(Fig. 3c), implying that skillful prediction of non-trend (possibly
internal) variability contributes to the overall improvement in raw
SAT skill (Fig. 1c). The resilience to detrending of the general
features of skill difference for annual PRE and SLP (compare panels
f and i of Figs. 1 and 3) bolsters the conclusion that the HRDP-
DPLE skill comparison reflects important differences in the
representation of non-trend variance (see also Supplementary
Fig. 3 for detrended MSSS maps).
Skill comparisons for seasonal fields show some noteworthy

differences from the annual mean comparisons (see Supplemen-
tary Figs. 4–7), but the primary conclusion that high resolution
generally enhances skill remains robust. In boreal winter (DJFM),
the increased HRDP skill for PRE over the western US becomes
even more pronounced while SLP shows more significant
improvement (ΔACC > 0.7) around the coast of the continental
US and Mexico (Supplementary Figs. 4 and 5). In boreal summer
(JJAS), the enhanced skill for PRE in the tropical Pacific shifts
further west and the SLP skill increase in the SEP and EPSO regions

becomes more prominent (Supplementary Figs. 6 and 7).
However, JJAS SLP skill degradation becomes worse over the
North Atlantic and surrounding continents, resulting in overall skill
degradation in HRDP compared to DPLE for this field in boreal
summer (Supplementary Table 1). The detailed mechanisms that
explain diverse regional skill differences and their seasonality will
be examined in future work.

Signal-to-noise characteristics
The HRDP-DPLE comparison lends support to the hypothesis that
higher model resolution can ameliorate the signal-to-noise
paradox. We focus here on the SLP field, following previous work
that has highlighted signal-to-noise issues in SLP predictions,
often but not exclusively in the context of NAO predictions using
large ensemble systems3,4,6,7,11,13–15,19,42,43. The model-world
predictability of annual SLP (quantified as the square root of the
signal-to-total variance fraction, or S2T; see Methods) is higher in
HRDP than DPLE over much of the Southern Hemisphere (SH) and
into the subtropics of the Northern Hemisphere, but lower over
Eurasia and high northern latitudes (Fig. 4d–f). The ratio of
predictable components (RPC= ACC/S2T; see Methods) is gen-
erally less than 1 over regions of positive skill in DPLE, implying

Fig. 2 Mean square skill score comparison for annual fields. MSSS skill for 10-member HRDP (a, d, g), 10-member DPLE (b, e, h), and their
difference (c, f, i) for years 1–5 forecasts of annual SAT (top), PRE (middle), and SLP (bottom). Difference values in (c, f, i) are non-zero only
where HRDP skill is significantly higher or lower than DPLE skill at the 90% confidence level (see Methods). See Supplementary Fig. 12 for
additional perspective on off-scale MSSS values for SAT. See Supplementary Table 1 for a quantitative summary of skill differences plotted
here.
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that DPLE is overconfident for SLP predictions that achieve only
modest actual skill (Fig. 4b, e, h). In contrast, HRDP ACC exceeds
0.5 over much more of the globe and these high-skill regions
generally coincide with RPC values near 1, reflecting commensu-
rate increases in both ACC and S2T over DPLE (Fig. 4g–i). A clear
exception is over the Norwegian Sea and surrounding regions
where RPC approaches 2 in HRDP, indicating prediction system
underconfidence (signal-to-noise paradox). The large increase in
the fraction of atmospheric signal variance in HRDP (Fig. 4f) is an
intriguing result that implies that the atmosphere is more
responsive to forcing (either external or natural variability from
the ocean) in the high-resolution system. Furthermore, the
combination of high signal variance and high skill in HRDP result
in RPC values closer to 1 (indicating the system is more realistic;
i.e., skillful without being overconfident or underconfident) over
large areas of the Pacific, Southern Ocean, Indian Ocean, and
Eurasia (Fig. 4a, d, g). However, the signal-to-noise characteristics
in the Atlantic sector exhibit some degradation in HRDP. In
addition to the significantly higher RPC in the polar Atlantic region
noted above, the northeastern subtropical Atlantic is characterized
by higher S2T and lower ACC in HRDP, yielding low RPC (system
overconfidence) that is significantly worse than in DPLE.

The improvements in signal-to-noise characteristics in HRDP are
quite distinct from the differences obtained by increasing
ensemble size in DPLE (Supplementary Fig. 8). As noted above,
increasing DPLE ensemble size from 10 to 40 yields slight
increases in ACC magnitude that in general cannot be distin-
guished from 10-member ACC uncertainty at the grid scale.
However, the larger ensemble size results in statistically significant
reductions in S2T across the globe and especially so in the
extratropics. The reduction in S2T with increased ensemble size is
due to a reduction in extratropical signal variance, not an increase
in total variance, because the overestimation of signal variance
due to noise contamination decreases with ensemble size13 while
the estimation of the total variance is relatively insensitive to
ensemble size (Supplementary Fig. 9). This combination (ACC
increase is less than S2T decrease) results in an RPC field for 40-
member DPLE showing a proliferation of signal-to-noise paradox
regions (RPC > 1). The complex, regionally-dependent relation-
ships between skill and signal-to-noise are summarized in joint
probability distributions that relate ACC, RPC, and S2T from the
different systems (Fig. 5). Increasing the DPLE ensemble size from
10 to 40 results in more than a doubling of area showing high skill
(here, defined as ACC > 0.5) for annual SLP, but this skill increase
comes at the expense of lower S2T and higher RPC (Fig. 5b–d).

Fig. 3 Detrended correlation comparison for annual fields. ACC skill for 10-member HRDP (a, d, g), 10-member DPLE (b, e, h), and their
difference (c, f, i) for years 1–5 forecasts of annual SAT (top), PRE (middle), and SLP (bottom). Difference values in (c, f, i) are non-zero only
where HRDP skill is significantly higher or lower than DPLE skill at the 90% confidence level (see Methods). All timeseries were linearly
detrended prior to ACC computation. See Supplementary Table 1 for a quantitative summary of skill differences plotted here.
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HRDP yields a fourfold increase in high skill area compared to 10-
member DPLE for SLP, and the high skill is paired with high S2T
such that RPC stays close to 1 (Fig. 5a, d). Metrics for annual PRE
yield similar results, although there is less increase in high skill
area in HRDP compared to DPLE (slightly more than double given
the same ensemble size; Fig. 5e–h). We conclude that HR produces
not only higher skill, but more realistic signal-to-noise properties
for atmospheric fields compared to a LR large ensemble system
due to higher signal variance fractions in most, but not all, high-
skill regions.

Large-scale climate trends
These results may also help to shed light on the potential failure of
CMIP-class models to reproduce observed large-scale trends in
surface temperature and pressure, particularly in the tropical
Pacific. Most climate models indicate that the response of the
tropical Pacific to rising greenhouse gases is El Nino-like with a
relatively greater warming of the tropical Pacific in the east
compared to the west and, consequently, a reduction in the west-
to-east warm-to-cool SST gradient. This is in stark contrast to the
strengthening of the west-to-east SST gradient that has been

observed in recent decades and, even when accounting for the
role of internal variability, the observed trends lie very close to the
edge of the modeled distribution44–48. This raises the concern that
there may be something fundamentally wrong with the modeled
representation of the response to forcing or internal variability in
this region, but the possibility remains that the observed trends
have just been a very unlikely occurrence. Two potential model
errors have been invoked to explain this issue. Some have argued
that the origins of the problem lie in the tropical Pacific itself, with
models incorrectly simulating the ocean dynamical thermostat
mechanism, whereby anomalous oceanic upwelling in response to
warming, modulates the temperature rise in the eastern tropical
Pacific45,46,49. Others have argued that the tropical Pacific issues
are actually a result of teleconnections from the SO where models
seem to poorly represent SO cooling (and Antarctic sea ice
expansion)48,50–54. Wills et al.48 show that the leading signal-to-
noise maximizing pattern of model-observations difference based
on CMIP historical ensembles highlights deficiencies in simulating
EPSO and eastern tropical Pacific cooling together with SLP
increase in the extratropical Pacific, South Atlantic, and South
Indian sectors (their Fig. 3).

Fig. 4 Signal-to-noise metrics for annual SLP. ACC, S2T, RPC for 10-member HRDP (a, d, g), 10-member DPLE (b, e, h), and their difference
(c, f, i) for years 1–5 forecasts of annual SLP. Difference values in (c, f, i) are non-zero only where HRDP values are significantly higher or lower
than DPLE values at the 90% confidence level (see Methods). Note that panels (a–c) replicate Fig. 1g–i to facilitate comparison.
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HRDP pentadal forecasts show much more realistic multi-
decadal trend patterns for SAT, PRE, and SLP than DPLE (Fig. 6). In
particular, the lack of warming in the SO and eastern tropical
Pacific, and the positive SLP trends in the midlatitude oceans, are
well-captured with patterns that project strongly onto the leading
bias pattern identified in CMIP models48. The spatial structure of
HRDP PRE trends is also more in line with observations. The
realism of HRDP trends is highest for FY1 and degrades with lead
time, but even FY5 trends show muted warming over the SO and
SEP together with SLP increase over SH midlatitudes (Supple-
mentary Fig. 10). This implies that initialization and/or how the
model propagates the signals introduced at initialization con-
tributes to realistic multidecadal trends in HRDP, not just
improved response to external forcing. The realism of DPLE
trends is also highest for FY1 but degrades rapidly such that large
trend biases are apparent by FY2 (Supplementary Fig. 11). The
better trend representation in HRDP corresponds to improved
FY1–5 skill metrics for several key climate indices such as the
tropical Pacific zonal SST gradient, SO surface temperature, and
Walker Circulation strength (Supplementary Figs. 12 and 13). While
HRDP forecasts do show a warming trend for SO SAT averaged
over all longitudes (resulting in a negative correlation with
observations), the SO warming in HRDP is much less than in
DPLE and SAT in the Pacific sector of the SO is quite well
represented in HRDP (Supplementary Fig. 12).
The results indicate that resolution alters the representation of

processes such that trends in the SO and tropical Pacific in these
decadal predictions are brought more in line with observations.
This strongly suggests that it is unlikely that LR CMIP-class models
are all behaving correctly and the observed trends have been a

statistically unlikely occurrence, but rather that such models may
be mis-representing relevant processes and that higher resolution
in the ocean and/or atmosphere may help remedy this. The
improvement in skill in the tropical Pacific is also closely linked to
the improvement in skill in the SO, adding to the growing body of
evidence (cited above) that the SO may act as a key pacemaker for
observed multidecadal variability in the tropics, and suggesting
that the origins of the improved tropical Pacific and global skill in
HRDP may lie in the improved representation of processes in the
EPSO. While there may be a role for an improved representation of
the ocean dynamical thermostat mechanism and/or improved
extratropical-tropical feedbacks, SAT skill improvement in HRDP is
significant in the western and central Pacific SO at early leads (FY1
and FY2) when there is no clear evidence of improved tropical
Pacific skill (Fig. 7). SEP skill improvement becomes significant only
when EPSO SAT skill degrades in DPLE but not in HRDP, starting at
FY3. This suggests that SEP skill improvements derive from SO
improvements, and not the other way around.

DISCUSSION
We have directly compared two initialized hindcast sets using
CESM that permit an assessment of decadal prediction sensitivity
to model horizontal resolution (Table 1), with a focus on pentadal
timescales. The HRDP system significantly outperforms DPLE, the
CESM contribution to DCPP of CMIP6, at predicting multiyear
variations in SAT, PRE, and SLP after accounting for sample and
ensemble size differences. Skill improvements are evident in both
the phasing and magnitude of forecast anomalies, although there
are local regions of skill degradation as well. The most prominent

Fig. 5 Global skill and signal-to-noise for annual SLP and PRE. For annual SLP (a–c) and PRE (e–g), global (80°S–80°N) joint probability
distributions summarizing the paired relationship between ACC and RPC scores from 10-member HRDP (a, e), 10-member DPLE (b, f), and 40-
member DPLE (c, g). Color fill shows the percent of surface area for each (ACC,RPC) pair, and text indicates total percent area characterized by
positive (ACC > 0) and high (ACC > 0.5; horizontal dashed line) skill. Note that the slope of the line between the origin and a point in (ACC,
RPC)-space reflects the S2T value for that point (solid line shows S2T= 1). Right panels show the integrated areas (in %) for high-skill regions
for annual SLP (d) and PRE (h) as a function of RPC.
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skill differences are resilient to detrending, and other regions of
skill increase emerge after detrending (e.g., SAT in the tropical
Atlantic), suggesting a role for internal variability in explaining
performance differences. We showed that unrealistic signal-to-
noise ratios in the low-resolution system, most evident when skill
is enhanced with a large ensemble, are significantly ameliorated
(although not eliminated) in the high-resolution system. The
improved signal-to-noise characteristics were related to the
significantly larger fraction of signal variance (relative to total
variance) in the high-resolution system, particularly for SLP in the
SH in the Pacific and Atlantic sectors. The comparison highlights
prediction system performance enhancements associated with
increased system resolution that are qualitatively different from
(and for many regions and fields, better than) those obtained by
increasing ensemble size.
The complexity of decadal prediction experiments makes it

challenging to attribute skill differences to the improved or
degraded representation of specific physical mechanisms, and it is
hoped that this global assessment helps to guide future efforts to
better understand diverse regional and seasonal sensitivities. The
global skill overview reveals a significant improvement in pentadal
SAT skill in the southeastern tropical Pacific (Fig. 1c), a region that
exerts a strong influence on global climate and hence global
climate prediction skill through its impact on the zonal
temperature gradient in the tropical Pacific (Supplementary Fig.
12), Walker Circulation strength (Supplementary Fig. 13), and the
strength and location of tropical convective heating anomalies

(Figs. 1f and 2f). The SEP improvement appears to relate to the
reduction of a spurious warming trend in that region present in
DPLE as well as better representation of non-trend decadal
fluctuations (Supplementary Fig. 12d). It seems likely that SEP
improvements in HRDP are fundamentally related to improved
predictions in the Pacific sector of the SO (Fig. 1c and
Supplementary Fig. 12), a region where HRDP also shows much
less spurious warming and better representation of non-trend
variance. Our interpretation is that HRDP skill enhancements
emanate from the EPSO to the SEP and the rest of the globe by
correcting spurious climate trends in DPLE (Fig. 6), in line with and
adding supporting evidence for the hypothesis that excessive SO
warming is a critical bias that explains the ubiquitous misrepre-
sentation of observed tropical climate trends in LR models48,50–54.
The results raise questions that will require substantial future

work (likely involving dedicated sensitivity experiments) to
definitively answer. A key outstanding question is: what specific
aspects of the HRDP system are responsible for improved skill and
signal-to-noise characteristics? The first-order EPSO and SEP
improvements could be related to a more realistic simulation of
low cloud-SST feedbacks in the HR atmosphere51,54 and/or to
improved two-way feedbacks between the EPSO and the tropical
Pacific52. Reduced tropical Pacific SST bias in the HR coupled
model26,28 could contribute to an improved representation of the
tropical dynamical thermostat mechanism45,46,49 which could
initiate and sustain two-way EPSO-SEP coupling more realistically
than in LR. The eddy-resolving ocean model could also be playing

Fig. 6 Global trends for annual SAT, PRE, and SLP.Multidecadal trends for annual SAT (a, d, g), PRE (b, e, h), and SLP (c, f, i) from observations
(a–c), 10-member HRDP (d–f), and 10-member DPLE (g–i). HRDP and DPLE trends are computed from FY1–5 predicted anomalies, while a
5-year running smoother is applied to observed timeseries before trend computation. The years included in the trend computation reflect the
intersection of available years from HRDP and observations.
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a role in amplifying the extratropical-tropical teleconnection
through stronger oceanic forcing of the atmosphere via mesoscale
air-sea interactions that are present in HR but absent in
LR18,31–35,55,56, and this small-scale exchange could be a factor
contributing to higher signal variance in HRDP atmospheric fields
(Figs. 4 and 5).

Another possibility is that the use of an eddy-resolving ocean
component in HRDP accounts for much of the improved
performance in HRDP due to a more realistic representation of
ocean and sea ice evolution in the SO. The residual mean
overturning circulations in the SO in the FOSI simulations used to
initialize HRDP and DPLE exhibit large differences in terms of both

Fig. 7 Correlation comparison for annual SAT by forecast year. ACC skill for 10-member HRDP (a, d, g, j, m), 10-member DPLE (b, e, h, k, n),
and their difference (c, f, i, l, o) for annual SAT for forecast years 1 through 5 (top to bottom rows). Difference values are non-zero only where
HRDP skill is significantly higher or lower than DPLE skill at the 90% confidence level (see Methods).
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time-mean amplitude and multidecadal trends in response to
historical forcing (Supplementary Fig. 14). The strengthening and
poleward expansion of the clockwise primary overturning cell and
weakening and contraction of the lower (anticlockwise) over-
turning cell seen in HR-FOSI over 1979–2017 are absent in LR-FOSI,
which instead shows a strengthening of the lower cell. The HR-
FOSI trend is more in line with an observation-based estimate of
recent SO overturning change57. The net poleward heat transport
trends, which reflect the ocean model response to the historical
strengthening of the Southern Annular Mode (SAM) due to
greenhouse gas and ozone forcings, are also very different, with
LR-FOSI showing increasing poleward heat transport while HR-
FOSI shows decreasing poleward heat transport (Supplementary
Fig. 14). The latter is more in line with the hypothesized role for
the ocean in delaying SO warming58, and it yields a better
reproduction of observed Antarctic sea ice extent change
(Supplementary Fig. 15). These results appear consistent with
recent work arguing that eddy-resolving ocean models may be
needed to improve simulations of SO response to forcing59,60. The
HRDP system, thus, likely benefits from improved ocean and sea
ice initial conditions in the SO that could enhance predictability of
internal SO modes of variability61 while the HR ocean component
also yields an improved SO response to predicted SAM increase
(Fig. 6 and Supplementary Figs. 12–15).
We hypothesize that a confluence of resolution-related

improvements in process representation accounts for enhanced
performance in a HR decadal prediction system compared to its LR
counterpart using CESM. The SO stands out in this preliminary
analysis as a critical region contributing to global skill sensitivity to
model resolution due to its apparent influence on global low-
frequency climate variability. These prediction results add to a
growing body of work highlighting the role of the SO as a global
climate pacemaker, and they suggest that increased resolution
may deliver not only improved climate predictions but also more
realistic historical and projection simulations by reducing spurious
SO warming. The high cost of such configurations for climate
applications remains a significant barrier, but to the extent that HR
improvements reflect better process representation, the reward
could be transformative breakthroughs in our understanding of
Earth system predictability and coupled model fidelity.

METHODS
Prediction systems
The CESM DPLE system is an ensemble forecast set using the low-
resolution component models (nominal 1°) of CESM1.162 that was
submitted to the DCPP21 of the CMIP6. An overview paper5

provides extensive detail about the DPLE prediction system, and
important design choices are summarized in Table 1. Historical
state information is incorporated in DPLE by initializing the ocean
and sea ice component models from a forced ocean−sea ice
(FOSI) simulation conducted using reanalysis-derived surface
atmospheric boundary conditions based on the version 1 protocol
of the Ocean Model Intercomparison Project (OMIP1)5,63. The
atmosphere and land component models are initialized from a
single member of the CESM1 Large Ensemble62 and as such are
not strongly constrained to match historical conditions at the time
of initialization. The DPLE system is comprised of 40-member
forecasts initialized (full field) each November 1 from 1954 to 2017
(for a total of 64 start dates) and each integrated for 122 months.
Ensemble generation is accomplished through round-off level
perturbations to the atmospheric potential temperature
initial state.
The CESM HRDP system uses a slightly different version of the

model (CESM1.326,64) in a high-resolution configuration (~0.1° in
the ocean and sea ice; ~0.25° in the atmosphere and land). The
0.1° ocean grid is paired with a 62-level vertical grid (62L) that is

identical to that used with the 1° ocean grid apart from the
addition of 2 abyssal levels to yield a maximum depth of 6000m.
HRDP uses a spectral element dynamical core in the atmosphere
component64,65, rather than the finite volume dynamical core
used in DPLE. Ocean and sea ice are initialized from a FOSI
simulation as in DPLE, but HR-FOSI differs from LR-FOSI as follows:
(1) it uses the 0.1° ocean and sea ice component models of
CESM266; and (2) it uses OMIP263 forcing derived from the
Japanese 55-year Reanalysis (JRA55-do67). Initialization of atmo-
sphere and land components is somewhat more sophisticated in
HRDP than in DPLE. The atmospheric initial conditions are
regridded JRA55 fields, and the land initial conditions come from
a high-resolution atmosphere−land simulation forced with
observed SSTs (the CESM contribution to HighResMIP68). As in
DPLE, full field initialization is used for all components. The HRDP
forecast set is necessarily smaller than DPLE (due to computational
expense), comprising 10-member ensembles initialized every
other November 1 between 1976 and 2016 and each integrated
for 62 months. As in DPLE, ensemble generation is accomplished
in HRDP through round-off level perturbation of the atmospheric
potential temperature initial condition.
Of all the differences in system design between DPLE and HRDP

(Table 1), changes in model horizontal resolution and ocean and
sea ice initialization are likely to account for most of the
differences in system performance on decadal timescales.
Investigating the relative impacts of specific changes in system
design will be pursued in future work.

Skill metrics
Prediction skill is assessed by comparing ensemble mean forecast
anomalies, �f i , to observed anomalies, �oi , for each of the forecast
annual means available from HRDP (i.e., i ¼ 1977; 1979; ¼ ; 2017f g
for FY1). Forecast anomalies are computed relative to model
climatology that varies with FY (τ) as follows:

�f iτ ¼ f iτ � f τ ¼ f iτ �
1
N

XN
i¼1

f iτ (1)

where the sum includes the N forecasts f iτ that verify within the
climatology window of 1981–2017 (note that N= 19 for
τ= {1, 2, 3, 4, 5}). Observed anomalies are also computed relative
to 1981–2017 climatology. Skill metrics are computed for a
particular FY (or FY average), and this lead time dependence is
implicit in what follows. The Pearson ACC is given by:

ACC ¼
P21

i¼1
�f i�oiP21

i¼1
�f i
2 P21

i¼1 �oi
2

(2)

The MSSS is computed as follows:

MSSS ¼ 1�
P21

i¼1
�f i � �oi

� �2

P21
i¼1 �oi

2
(3)

Note that the summation over 21 samples corresponds to the
number of hindcasts available from HRDP, but that the temporal
sample size can be lower than 21 if corresponding observations
are not available. ACC and MSSS are both deterministic skill
metrics that quantify the accuracy of a prediction69. The ACC
measures the linear association between forecasts and observa-
tions, and as it is insensitive to the magnitude of anomalies, it
primarily reflects the correct phasing of variability7. The MSSS is a
summary metric that combines the correlation with the condi-
tional bias, and since it reflects the ratio of forecast error variance
relative to observed variance, it can be viewed as a measure of the
accuracy of forecast anomaly magnitudes69. For a perfect forecast,
both ACC and MSSS are equal to 1.
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The ratio of predictable components is defined as in previous
studies7,12,13 as:

RPC ¼ ACC

σf
sig=σ

f
tot

¼ ACC
S2T (4)

where the denominator is the signal-to-total (S2T) variability ratio
of the forecasts (f), and the numerator is a lower bound
approximation of the S2T variability ratio of the real world. As
has been discussed in prior work70, the RPC metric as computed
above is only an estimate of the true RPC, and its accuracy and
relevance are questionable when ACC is low. In this paper, RPC
values are set to zero where ACC < 0. In a perfect prediction
system, RPC is equal to 1, and RPC values below and above 1
reflect overconfident and underconfident predictions,
respectively42.
Signal and total variability from the ensemble forecasts is

decomposed as follows:

σfsig ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
21

X21

i¼1

1
M

XM

m¼1
�f im

� �2
s

σftot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1

1
21

X21

i¼1
�f imni

� �2
r

(5)

Here, σf
sig is the maximum likelihood estimate of the temporal

standard deviation of the ensemble mean forecast (the signal). It is
computed by first averaging forecast anomalies over member
index m for a given ensemble size M, taking the square, averaging
over the forecast sample index i, and taking the square root. The
total variability of the forecasts, σftot, is computed similarly but
from individual-member timeseries constructed by randomly
selecting one ensemble member (mni) for each sample (i) and
for each iteration (n). For both DPLE and HRDP, the σf

tot estimate is
the average of N= 100 iterations. To account for differences in
ensemble size between DPLE and HRDP, skill scores from DPLE are
computed by randomly sampling a 10-member ensemble from
the 40-member pool (for each sample i), computing a skill metric
as outlined above, then repeating 100 times to yield a distribution
of skill scores that can be compared to the single 10-member skill
score available from HRDP.

Verification
Prediction skill is verified against the following observational
datasets: CRU-TS version 4.0571 for SAT over land and HadISST172

for ocean surface temperature; GPCP version 2.373 for PRE; ERA574

reanalysis for SLP; and the Sea Ice Index75 version 3.0 from the
National Snow and Ice Data Center for Antarctic sea ice extent
(Supplementary Fig. 15). All model and observed fields are
conservatively mapped to a regular 5° × 5° grid prior to skill
assessment. The merged SAT and ERA5 SLP fields used here are
available for all years through 2020; the PRE field extends from
1979 to 2021. This paper focuses primarily on skill at predicting
pentadal anomalies corresponding to FY1–5. Forecast year
averages correspond to calendar year averages (January to
December), such that the forecast year 1 average includes forecast
months 3–14 for predictions initialized in November.

Significance testing
Significance testing focuses on whether skill differences between
the two systems are significant. To test whether HRDP skill scores
are significantly different from DPLE skill scores, the single
realization of 10-member HRDP skill is compared to a boot-
strapped distribution (N= 100) of 10-member DPLE skill scores
(see above). Skill decrease/increase is deemed significant if HRDP
scores fall outside of the 0.05–0.95 quantile values of the DPLE
distribution.

DATA AVAILABILITY
The full DPLE dataset is available from NCAR’s Climate Data Gateway at https://
www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM1-CAM5-DP.html. The
regridded (5° × 5°) HRDP data used for the analyses presented in this paper are
archived at the NCAR Geoscience Data Exchange (GDEX) at https://doi.org/10.5065/
9t56-sm14.

CODE AVAILABILITY
The CESM1.1 code used to generate DPLE is available at https://www.cesm.ucar.edu/
models/cesm1.1/index.html. The CESM1.3 code used to generate HRDP is available at
https://github.com/ihesp/cesm/tree/ihesp-hires-master. The Python code used to
generate manuscript figures is available at the NCAR Geoscience Data Exchange
(GDEX) at https://doi.org/10.5065/9t56-sm14.
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